Question: https://codility.com/demo/take-sample-test/wire_burnouts
Question Name: psi2012 or Wire-Burnouts or WireBurnouts
A good application of weighted quick union algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | class WeightedQuickUnion(object): ''' A class for weighted quick union data structure Details: https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf ''' ID = None # ID[i] = component identifier of i weight = None # weight[i] = number of nodes in the subtree(component) # with i being the root def __init__(self, size): assert size > 0 # Each individual cell is a component self.ID = [i for i in xrange(size)] # Each component has only one item initially self.weight = [1 for i in xrange(size)] return def findRoot(self, cell): ''' Return the root of tree, to which cell belongs. That is, the component identifier of cell. ''' assert 0 <= cell < len(self.ID) while cell != self.ID[cell]: cell = self.ID[cell] return cell def isConnected(self, p, q): ''' Check whether p and q belong to same component/tree. ''' assert 0 <= p < len(self.ID) and 0 <= q < len(self.ID) return self.findRoot(p) == self.findRoot(q) def union(self, p, q): ''' Merge the components (trees), to which p and q belong ''' assert 0 <= p < len(self.ID) and 0 <= q < len(self.ID) rootP = self.findRoot(p) rootQ = self.findRoot(q) # Already the same component if rootP == rootQ: return if self.weight[rootP] >= self.weight[rootQ]: self.ID[rootQ] = rootP self.weight[rootP] += self.weight[rootQ] else: self.ID[rootP] = rootQ self.weight[rootQ] += self.weight[rootP] return class Grid(object): ''' A wrapper class of WeightedQuickUnion for the current grid ''' grid = None size = -1 def __init__(self, size): self.grid = WeightedQuickUnion(size*size) # This is a size * size grid self.size = size return def isConnected(self, x1, y1, x2, y2): ''' Check whether the nodes (x1, y1) and (x2, y2) in the grid is connected or not. ''' p = x1 * self.size + y1 q = x2 * self.size + y2 return self.grid.isConnected(p, q) def union(self, x1, y1, x2, y2): ''' Connect two nodes (x1, y1) and (x2, y2) in the grid ''' p = x1 * self.size + y1 q = x2 * self.size + y2 self.grid.union(p, q) return def solution(N, A, B, C): # Not enough burn out wires to stop the current from flowing if len(A) < N + N - 2: return -1 grid = Grid(N) # Get all the wires, which will burn out. removed = {} for index in xrange(len(A)): if C[index] == 0: removed[(A[index], B[index], A[index], B[index]+1)] = True else: removed[(A[index], B[index], A[index]+1, B[index])] = True # Add all the never-burn wires to the grid for x in xrange(N): for y in xrange(N): if y + 1 < N and not (x, y, x, y+1) in removed: grid.union(x, y, x, y+1) if x + 1 < N and not (x, y, x+1, y) in removed: grid.union(x, y, x+1, y) # Even if all the wires in A, B, and C burn out, the current is still flowing if grid.isConnected(0, 0, N-1, N-1): return -1 for index in xrange(len(A)-1, -1, -1): # Recovery one burn-out wire if C[index] == 0: grid.union(A[index], B[index], A[index], B[index]+1) else: grid.union(A[index], B[index], A[index]+1, B[index]) # After recovery, the current could flow. if grid.isConnected(0, 0, N-1, N-1): return index + 1 # Would never be here. return -1 |